Recent results on branching Brownian motion on the positive real axis

Pascal Maillard (Université Paris-Sud (soon Paris-Saclay))

CMAP, Ecole Polytechnique, May 18 2017

Outline

Introduction

- 2 BBM with absorption
- 3 BBM with absorption, near-critical drift
- BBM with absorption, critical drift

990

イロト イロト イヨト イヨト

Branching Brownian motion (BBM)

Picture by Matt Roberts

Definition

- A particle performs standard Brownian motion started at a point $x \in \mathbb{R}$.
- With rate 1/2, it branches into 2 offspring (can be generalized)
- Each offspring repeats this process independently of the others.
- \longrightarrow A Brownian motion indexed by a tree.

Sac

< ∃→

・ロト ・ 同 ト ・ ヨ ト

- Discrete counterpart: branching random walk, has lots of applications in diverse domains
 - Generalisation of age-dependent branching processes (*Crump–Mode–Jagers process*), model for asexual population undergoing mutation (position = fitness)
 - Toy model for *log-correlated field*, e.g. 2-dimensional Gaussian free field appearing notably in *Liouville quantum gravity theory*.
 - Used to study random walk in random environment on trees Hu-Shi et al., growth-fragmentation processes Bertoin-Budd-Curien-Kortchemski, loop O(n) model on random quadrangulations Chen-Curien-M., ...
- Intimate relation with (F-)KPP equation
- With diffusion constant depending on time : also known as Derrida's CREM spin glass model

Sac

イロト イポト イヨト イヨト 二日

Picture by Éric Brunet

◆□▶ ◆□▶ ◆注▶ ◆注▶ -

≣ 5 / 27 990

A family of martingales

For every $\theta \in \mathbb{R}$,

$$\mathbb{E}[\#\{u \in \mathcal{N}_t : X_u(t) \approx \theta t\}] = e^{\frac{1}{2}t} \mathbb{P}(B_t \approx \theta t) \approx e^{\frac{1}{2}(1-\theta^2)t}$$

Martingales:

$$W_t^{(\theta)} = \sum_{u \in \mathcal{N}_t} e^{\theta X_u(t) - \frac{1}{2}(1+\theta^2)t}$$

Theorem (Biggins 78)

The martingale $(W_t^{(\theta)})_{t\geq 0}$ is uniformly integrable if and only if $|\theta| < 1$. In this case, for every $a, b \in \mathbb{R}$, a < b,

$$\frac{\#\{u \in \mathcal{N}_t : X_u(t) \in \theta t + [a, b]\}}{\mathbb{E}[\#\{u \in \mathcal{N}_t : X_u(t) \in \theta t + [a, b]\}]} \to W^{(\theta)} := W^{(\theta)}_{\infty}, \quad a.s. \ as \ t \to \infty.$$

5900

Derivative martingale

For $\theta = 1$, $W_t^{(1)} \to 0$, almost surely as $t \to \infty$. Derivative martingale:

$$D_t = -\frac{d}{d\theta} W_t^{(\theta)} \Big|_{\theta=1} = \sum_{u \in \mathcal{N}_t} (t - X_u(t)) e^{X_u(t) - t}.$$

Theorem (Lalley–Sellke 87)

Almost surely, D_t converges as $t \to \infty$ to a non-degenerate r.v. D.

Theorem (Bramson 83 + Lalley-Sellke 87, Aïdekon 11)

Let M_t = maximum at time t. Then, conditioned on D, for some constant C > 0,

$$M_t - (t - \frac{3}{2}\log t) \Rightarrow \log CD + G,$$

where G is a standard Gumbel-distributed random variable.

7 / 27

nan

・ロト ・回ト ・ヨト ・ヨト

Outline

Introduction

BBM with absorption

3 BBM with absorption, near-critical drift

BBM with absorption, critical drift

DQC

イロト イロト イヨト イヨト

Absorption at the origin

- Start with one particle at $x \ge 0$.
- Add $drift \mu$, $\mu \in \mathbb{R}$ to motion of particles.
- Kill particles upon hitting the origin.

Theorem (Kesten 78)

$$\mathbb{P}(\textit{survival}) > 0 \iff \mu < 1.$$

Why should we do this?

- Useful for the study of BBM without absorption (e.g., convergence of derivative martingale)
- Biological interpretation: natural selection
- Appears in other mathematical models, e.g. infinite bin models Aldous, Mallein-Ramassany

9 / 27

San

イロト イヨト イヨト

Absorption at the origin, $\mu \geq 1$

Start with one particle at 0, absorb particles at -x. N_x = number of particles absorbed at -x. Set

$$\theta_{\pm} = \mu \pm \sqrt{\mu^2 - 1}.$$

Theorem (Neveu 87, Chauvin 88)

 $(N_x)_{x\geq 0}$ is a continuous-time Galton–Watson process. Moreover, almost surely as $x \to \infty$,

• If
$$\mu > 1$$
, $e^{-\theta_- x} N_x \to W^{(\theta_-)}$

• If
$$\mu = 1$$
, $xe^{-x}N_x \rightarrow D$.

Theorem

As $x \to \infty$,

•
$$\mu > 1$$
: $\mathbb{P}(W^{(\theta_{-})} > x) \sim C(\mu) x^{-\theta_{+}/\theta_{-}}$ Guivarc'h 90, Liu 00

• $\mu = 1$: $\mathbb{P}(D > x) \sim 1/x$ Buraczewski 09, Berestycki-Berestycki-Schweinsberg 10, M. 12

Absorption at the origin, $\mu \ge 1$ (contd.)

$$\theta_{\pm} = \mu \pm \sqrt{\mu^2 - 1}.$$

Theorem As $x \to \infty$, • $\mu > 1$: $\mathbb{P}(W^{(\theta_{-})} > x) \sim C(\mu)x^{-\theta_{+}/\theta_{-}}$ Guivarc'h 90, Liu 00 • $\mu = 1$: $\mathbb{P}(D > x) \sim 1/x$ Buraczewski 09, Berestycki-Berestycki-Schweinsberg 10, M. 12

Theorem (M. 10, Aïdekon-Hu-Zindy 12)

As $n \to \infty$,

•
$$\mu > 1$$
: $\mathbb{P}(N_x > n) \sim C(e^{\theta + x} - e^{\theta - x})/n^{-\theta_+/\theta_-}$.

• $\mu = 1$: $\mathbb{P}(N_x > n) \sim xe^x/(n(\log n)^2)$.

11 / 27

・ロト ・回ト ・ヨト ・ヨト

na a

Outline

Introduction

- BBM with absorption
- 3 BBM with absorption, near-critical drift
 - 4 BBM with absorption, critical drift

DQC

イロト イロト イヨト イヨト

Absorption at the origin, $\mu = 1 - \varepsilon$

Few works on $\mu < 1$ (Berestycki-Brunet-Harris-Miloś, Corre). But near-critical case $\mu = 1 - \varepsilon$, $0 < \varepsilon \ll 1$ well understood. Parametrize ε by

$$\varepsilon = \frac{\pi^2}{2L^2} \qquad (\varepsilon \to 0 \iff L \to \infty).$$

Theorem (Brunet-Derrida 06, Gantert-Hu-Shi 08)

$$\mathbb{P}_1(survival) = \exp\left(-(1+o(1))L\right), \quad L \to \infty.$$

590

イロト イロト イヨト イヨト

Absorption at the origin, $\mu = 1 - \varepsilon$

Few works on $\mu < 1$ (Berestycki-Brunet-Harris-Miloś, Corre). But near-critical case $\mu = 1 - \varepsilon$, $0 < \varepsilon \ll 1$ well understood. Parametrize ε by

$$\varepsilon = \frac{\pi^2}{2L^2} \qquad (\varepsilon \to 0 \iff L \to \infty).$$

Theorem (Brunet-Derrida 06, Gantert-Hu-Shi 08)

$$\mathbb{P}_1(survival) = \exp\left(-(1+o(1))L\right), \quad L \to \infty.$$

Theorem (BBS 10)

There exists C > 0, such that, as $L \to \infty$,

 $\mathbb{P}_{L+x}(survival) \to 1 - \phi(x), \quad \phi(x) := \mathbb{E}[\exp(-CDe^x)].$

and if x = x(L) such that $L - x \to \infty$,

 $\mathbb{P}_x(survival) \sim C(L/\pi) \sin(\pi x/L) e^{x-L}.$

BBS 10 proof

Define

$$Z_t^L = \sum_{u \in \mathcal{N}_t} L \sin(\pi X_u(t)/L) e^{x-L}.$$

Then $(Z_t^L)_{t>0}$ is (almost) a martingale for BBM with absorption at 0 and at L.

Theorem (BBS 10)

Suppose the initial configurations are such that $Z_0^L \Rightarrow z_0$ as $L \to \infty$, and $L - \max_u X_u(0) \to \infty$. Then $(Z_{\tau_{3t}}^L)_{t>0}$ converges as $L \to \infty$ (wrt fidis) to a continuous-state branching process started at z_0 . Moreover, $\mathbb{P}(BBM \text{ survives forever}) \rightarrow \mathbb{P}(CSBP \text{ started from } z_0 \text{ goes to } \infty).$

The CSBP in the above theorem is Neveu's CSBP and has branching mechanism

$$\psi(u) = au + \pi^2 u \log u = a'u + \pi^2 \int_0^\infty (e^{-ux} - 1 + ux \mathbf{1}_{x \le 1}) \frac{dx}{x^2}$$

for some (implicit) constants $a, a' \in \mathbb{R}$. In particular, it is supercritical (with ∞ mean). ◆□▶ ◆□▶ ◆三▶ ★三▶ - 三 - つへで Pascal Maillard

14 / 27

BBS 10 proof (2)

Theorem (BBS 10)

If x = x(L) such that $L - x \to \infty$,

$$\mathbb{P}_x(survival) \sim \frac{CL}{\pi} \sin(\pi x/L) e^{x-L}.$$

Proof: Set $w(x) := L \sin(\pi x/L)e^{x-L}$. Start BBM with 1/w(x) particles at x at time 0. Then

 $\mathbb{P}(\text{survival}) \to \mathbb{P}(\text{CSBP started at 1 goes to } \infty) \in (0,1).$

Also, by independence,

$$1 - \mathbb{P}(\text{survival}) = (1 - \mathbb{P}_x(\text{survival}))^{1/w(x)} \sim \exp\left(-\frac{\mathbb{P}_x(\text{survival})}{w(x)}\right),$$

and so

$$\mathbb{P}_x(\text{survival}) \sim Cw(x).$$

Pascal Maillard

15 / 27

590

BBS 10 proof (3)

Theorem (BBS 10)

There exists C > 0, such that, as $L \to \infty$,

$$\mathbb{P}_{L+x}(survival) \to 1 - \phi(x), \quad \phi(x) = \mathbb{E}[\exp(-CDe^x)].$$

Proof: Wait a long time *T* (independent of *L*), so that $L - \max_u X_u(T) \gg 1$. Then using $L \sin(\pi x/L) \sim \pi(L - x)$ for $L - x \ll L$, we get

$$Z_T^L \approx \pi e^x D_T,$$

with $(D_t)_{t\geq 0}$ the derivative martingale of usual BBM. Let first $L \to \infty$ then $T \to \infty$ to get

$$\mathbb{P}_{L+x}(\text{survival}) = 1 - \mathbb{E}[\mathbb{P}_{L+x}(\text{extinction} | \mathcal{F}_T)]$$

$$\approx 1 - \mathbb{E}[\mathbb{P}(\text{CSBP started from } \pi e^x D_T \text{ goes to } 0)]$$

$$\approx 1 - \mathbb{E}[\exp(-CDe^x)] = 1 - \phi(x). \quad \Box$$

16 / 27

5900

・ロト ・回ト ・ヨト ・ヨト

Basic idea

Decompose process into bulk + fluctuations by putting an additional absorbing barrier at *L*.

- bulk: Particles that don't hit *L*.
- fluctuations: Particles from the moment they hit *L*.

Then,

- $Z_t^{L,\text{bulk}}$ stays bounded over time scale L^3 .
- $Z_t^{L,\text{fluctuations}}$ increases from the contributions of the particles hitting *L*, an increase being roughly distributed as πD , with *D* derivative martingale limit.
- Particles hit *L* with rate $O(L^{-3})$.

17 / 27

San

イロト イヨト イヨト

Basic idea

Decompose process into bulk + fluctuations by putting an additional absorbing barrier at L - A, where A is a large constant.

- bulk: Particles that don't hit L A.
- fluctuations: Particles from the moment they hit L A.

Then,

- $Z_t^{L,\text{bulk}}$ decreases almost deterministically as $\exp(-At/L^3)$.
- $Z_t^{L,\text{fluctuations}}$ increases from the contributions of the particles hitting *L*, an increase being roughly distributed as $\pi e^{-A}D$, with *D* derivative martingale limit.
- Particles hit L A with rate $O(e^A/L^3)$.

na a

・ロト ・回 ト ・回 ト ・ 回 ト

Basic idea

Decompose process into bulk + fluctuations by putting an additional absorbing barrier at L - A, where A is a large constant.

- bulk: Particles that don't hit L A.
- fluctuations: Particles from the moment they hit L A.

Then,

- $Z_t^{L,\text{bulk}}$ decreases almost deterministically as $\exp(-At/L^3)$.
- $Z_t^{L,\text{fluctuations}}$ increases from the contributions of the particles hitting *L*, an increase being roughly distributed as $\pi e^{-A}D$, with *D* derivative martingale limit.
- Particles hit L A with rate $O(e^A/L^3)$.

Recall: $\mathbb{P}(D > x) \sim 1/x$, $x \to \infty$. This yields convergence of $(Z_{L^3t}^L)_{t \ge 0}$ to Neveu's CSBP as $L \to \infty$.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The basic phenomenological picture of BBM with near-critical drift (bulk + fluctuations) was established in Brunet-Derrida-Mueller-Munier 06
- **②** The techniques in BBS 10 were a key ingredient in the study of BBM with selection of the *N* right-most particles, *N* ≫ 1 (M 16). Relation between parameters: $\log N \approx L$, so $\varepsilon \approx \pi^2/2(\log N)^2$.

San

イロト イポト イヨト イヨト

Outline

Introduction

- 2 BBM with absorption
- 3 BBM with absorption, near-critical drift
- BBM with absorption, critical drift

DQC

イロト イロト イヨト イヨト

Questions:

- Asymptotic of $\mathbb{P}_x($ survival until time t)?
- Conditioned on survival until time *t*, what does the BBM look like?

200

イロト イロト イヨト イヨト

Questions:

- Asymptotic of $\mathbb{P}_x($ survival until time t)?
- Conditioned on survival until time *t*, what does the BBM look like?

Kesten 78:

• Let
$$L_t = ct^{1/3}$$
, $c = (3\pi^2/2)^{1/3}$, Fix $x \ge 0$.

 $\mathbb{P}_x($ survival until time $t) = xe^{x-L_t+O((\log t)^2)}$.

• Conditioned on survival until time *t*, with high probability,

$$\#\mathcal{N}_t \le e^{O(t^{2/9}(\log t)^{2/3})}$$
 and $\max_u X_u(t) \le O(t^{2/9}(\log t)^{2/3}).$

Note: $t^{1/3}$ scaling reminiscent of results about particles in BBM staying always close to the maximum Faraud-Hu-Shi, Fang-Zeitouni, Roberts.

20 / 27

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BBS 12 results

$$L_t = ct^{1/3}$$
, $c = (3\pi^2/2)^{1/3}$, $w_t(x) = L_t \sin(\pi x/L_t)e^{x-L_t}$.

Theorem (BBS 12)

$$C_1 \leq \mathbb{P}_{L_t}(survival until time t) \leq C_2.$$

If $L_t - x \geq 1$,

 $C_1w_t(x) \leq \mathbb{P}_x(\text{survival until time } t) \leq C_2w_t(x).$

590

BBS 12 results

$$L_t = ct^{1/3}$$
, $c = (3\pi^2/2)^{1/3}$, $w_t(x) = L_t \sin(\pi x/L_t)e^{x-L_t}$.

Theorem (BBS 12)

$$C_1 \leq \mathbb{P}_{L_t}(survival until time t) \leq C_2.$$

If $L_t - x \ge 1$,

 $C_1w_t(x) \leq \mathbb{P}_x(survival until time t) \leq C_2w_t(x).$

Theorem (Berestycki-M.-Schweinsberg, in preparation)

There exists C > 0, such that, as $t \to \infty$,

 $\mathbb{P}_{L_t+x}(\text{survival until time } t) \to 1 - \phi(x), \quad \phi(x) = \mathbb{E}[\exp(-CDe^x)].$

and if x = x(t) such that $L_t - x \rightarrow \infty$,

 $\mathbb{P}_x(survival until time t) \sim (C/\pi)w_t(x)$

New results

$$L_t = ct^{1/3}$$
, $c = (3\pi^2/2)^{1/3}$, ζ = time of extinction.

Corollary (BMS)

- For fixed $x \in \mathbb{R}$, under \mathbb{P}_{L_t+x} , the r.v. $(\zeta t)/t^{2/3}$ converges in law to $\frac{3}{c}(G x \log CD)$, where G is a Gumbel-distributed random variable independent of D.
- Suppose $L_t x \to \infty$. Conditionally on $\zeta > t$, under \mathbb{P}_x , $(\zeta t)/t^{2/3}$ converges in law to $\operatorname{Exp}(c/3)$ as $t \to \infty$.

Reason: For fixed $s \ge 0$,

$$L_{t+st^{2/3}} = L_t + \frac{c}{3}s + o(1).$$

This gives as $t \to \infty$, for fixed $x \in \mathbb{R}$,

$$\mathbb{P}_{L_t+x}(\zeta \leq t+st^{2/3}) \rightarrow \phi(x-\frac{c}{3}s) = \mathbb{E}[e^{-CDe^{x-(c/3)s}}].$$

22 / 27

San

$$L_t = ct^{1/3}$$
, $c = (3\pi^2/2)^{1/3}$, ζ = time of extinction, $M_t = \max_u X_u(t)$.

Theorem (BMS)

• For fixed $x \in \mathbb{R}$, under \mathbb{P}_{L_t+x} , the r.v. $M_t/t^{2/9}$ converges in law to $(3c^2(G - x - \log CD) \lor 0)^{1/3}$, where G is a Gumbel-distributed random variable independent of D.

Suppose $L_t - x \to \infty$. Conditionally on $\zeta > t$, under \mathbb{P}_x , $M_t/t^{2/9}$ converges in law to $(3c^2V)^{1/3}$, where $V \sim \text{Exp}(1)$.

Reason: morally, $M_t \approx L_{\zeta-t}$ if $\zeta > t$ (and $M_t = 0$ if $\zeta \leq t$).

Sac

ヘロト ヘヨト ヘヨト

$$L_t = ct^{1/3}, c = (3\pi^2/2)^{1/3}, \zeta$$
 = time of extinction, $M_t = \max_u X_u(t)$.

Theorem (BMS)

• For fixed $x \in \mathbb{R}$, under \mathbb{P}_{L_t+x} , the r.v. $M_t/t^{2/9}$ converges in law to $(3c^2(G-x-\log CD)\vee 0)^{1/3}$, where G is a Gumbel-distributed random variable independent of D.

Suppose $L_t - x \to \infty$. Conditionally on $\zeta > t$, under \mathbb{P}_x , $M_t/t^{2/9}$ converges in law to $(3c^2V)^{1/3}$, where $V \sim \text{Exp}(1)$.

Reason: morally, $M_t \approx L_{\zeta-t}$ if $\zeta > t$ (and $M_t = 0$ if $\zeta \leq t$).

Same result holds with M_t replaced by $\log \# \mathcal{N}_t$.

Sac

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

New results (contd.)

•
$$L_t(s) = L_{t-s} = c(t-s)^{1/3}$$
.
• $Z_t(s) = \sum_{u \in \mathbb{N}_s} w_{t-s}(X_u(s)) = \sum_{u \in \mathbb{N}_s} L_t(s) \sin(\pi X_u(s)/L_t(s)) e^{X_u(s) - L_t(s)}$.

Theorem (BMS)

Suppose the initial configurations are such that $Z_t(0) \Rightarrow z_0$ as $t \to \infty$, and $L_t - \max_u X_u(0) \to \infty$. Then

- $(Z_t(t(1-e^{-s})))_{s\geq 0}$ converges as $t \to \infty$ (wrt fidis) to the CSBP with branching mechanism $\psi(u) = au + \frac{2}{3}u\log u$ started at z_0 .
- $\mathbb{P}(\zeta > t) \to \mathbb{P}(CSBP \text{ started from } z_0 \text{ goes to } \infty)$, as $t \to \infty$.
- Conditioned on $\zeta > t$, $(Z_t(t(1 e^{-s})))_{s \ge 0}$ converges as $t \to \infty$ to the CSBP started at z_0 conditioned to go to ∞ .

Sac

・ロト ・回ト ・ヨト ・ヨト

New results (contd.)

•
$$L_t(s) = L_{t-s} = c(t-s)^{1/3}$$
.
• $Z_t(s) = \sum_{u \in \mathbb{N}_s} w_{t-s}(X_u(s)) = \sum_{u \in \mathbb{N}_s} L_t(s) \sin(\pi X_u(s)/L_t(s)) e^{X_u(s) - L_t(s)}$.

Theorem (BMS)

Suppose the initial configurations are such that $Z_t(0) \Rightarrow z_0$ as $t \to \infty$, and $L_t - \max_u X_u(0) \to \infty$. Then

- $(Z_t(t(1-e^{-s})))_{s\geq 0}$ converges as $t \to \infty$ (wrt fidis) to the CSBP with branching mechanism $\psi(u) = au + \frac{2}{3}u\log u$ started at z_0 .
- $\mathbb{P}(\zeta > t) \to \mathbb{P}(CSBP \text{ started from } z_0 \text{ goes to } \infty), \text{ as } t \to \infty.$
- Conditioned on $\zeta > t$, $(Z_t(t(1 e^{-s})))_{s \ge 0}$ converges as $t \to \infty$ to the CSBP started at z_0 conditioned to go to ∞ .

Proof inspired by BBS 10 but requiring furthermore precise estimates for density of Brownian motion in curved domains refining those obtained in Roberts 12.

Pascal Maillard

24 / 27

In order to understand the relation between the several results, we use the long-time behavior of Neveu's CSBP. It grows doubly-exponentially:

Theorem (Neveu 92)

Let $(Y_t)_{t\geq 0}$ be the CSBP with branching mechanism $\psi(u) = au + bu \log u$, $a \in \mathbb{R}$, b > 0, starting at $z_0 > 0$. Then,

 $\frac{\log Y_t}{e^{bt}}$ converges almost surely to a limit Y.

In particular, almost surely, the process survives iff Y > 0. Furthermore, there is C = C(a, b), such that $Y - \log Cz_0$ follows the Gumbel distribution.

San

・ロト ・回ト ・ヨト ・ヨト

Heuristic: As long as $R_s \approx L_t(s)$, we expect $\log Z_t(s) \approx R_s - L_t(s)$. When does R_s become significantly different from $L_t(s)$?

26 / 27

590

イロト 不同 とうほう 不同 とう

Heuristic: As long as $R_s \approx L_t(s)$, we expect $\log Z_t(s) \approx R_s - L_t(s)$. When does R_s become significantly different from $L_t(s)$?

Answer: With the asymptotic growth of Neveu's CSBP, can check that $\log Z_t(s) \ll L_t(s)$ as long as $t - s \gg t^{2/3}$, hence the turning point is at $s = t - Kt^{2/3}$ for *K* large and one can read off M_t as well as $(\zeta - t)/t^{2/3}$ from $Z_t(s)$ at that point.

26 / 27

◆□▶ ◆□▶ ◆三▶ ★三▶ - 三 - つへで

Conclusion

- We were able to push the techniques from BBS 10 on BBM with near-critical drift to the case of critical drift.
- Results might be of help for the fine study of other models involving extremal particles of BBM.
 Example CREM (Derrida's continuous random energy model): BBM during time [0, *T*] with time-dependent diffusion constant 2σ²(t/T). If σ² is

strictly decreasing, then (M., Zeitouni 16) there exists a function m(T) and constants c, c', c'' > 0, such that

{maximum at time T} – $m(T) \Rightarrow$ mixture of Gumbel, with $m(T) = cT - c'T^{2/3} - c'' \log T + O(1)$.

Removing the O(1) term would require an analysis similar to the one performed here.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Conclusion

- We were able to push the techniques from BBS 10 on BBM with near-critical drift to the case of critical drift.
- Results might be of help for the fine study of other models involving extremal particles of BBM.
 Example CREM (Derrida's continuous random energy model): BBM during time [0, T] with time-dependent diffusion constant $2\sigma^2(t/T)$. If σ^2 is strictly decreasing, then (Nr. Zerounul6) there exists a function m(T) and constants c, c', c'' > 0, such that

strictly decreasing, used that constants c, c', c'' > 0, such that {maximum at time T} – $m(T) \Rightarrow$ mixture of Gumbel, with $m(T) = cT - c'T^{2/3} - c'' \log T + O(1)$.

Removing the O(1) term would require an analysis similar to the one performed here.