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Branching Brownian motion (BBM)

Picture by Matt Roberts

Definition

A particle performs standard Brownian motion started at a point x ∈ R.
With rate 1/2, it branches into 2 o�spring (can be generalized)

Each o�spring repeats this process independently of the others.

−→ A Brownian motion indexed by a tree.
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Why BBM ?

Discrete counterpart: branching random walk, has lots of applications in
diverse domains

Generalisation of age-dependent branching processes
(Crump–Mode–Jagers process), model for asexual population undergoing
mutation (position = fitness)
Toy model for log-correlated field, e.g. 2-dimensional Gaussian free field
appearing notably in Liouville quantum gravity theory.
Used to study random walk in random environment on trees Hu–Shi et al.,
growth-fragmentation processes Bertoin–Budd–Curien–Kortchemski, loop O(n)
model on random quadrangulations Chen–Curien–M., . . .

Intimate relation with (F-)KPP equation

With di�usion constant depending on time : also known as Derrida’s
CREM spin glass model
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Maximum : LLN

Mt = maximum at time t.

LLN (Biggins ’77)

Almost surely,

Mt/t → 1, as t →∞.

Picture by Éric Brunet
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A family of martingales

For every θ ∈ R,

E[#{u ∈ Nt : Xu(t) ≈ θt}] = e
1
2 tP(Bt ≈ θt) ≈ e

1
2 (1−θ

2)t .

Martingales:

W (θ)
t =

∑
u∈Nt

eθXu(t)−
1
2 (1+θ

2)t

Theorem (Biggins 78)

The martingale (W (θ)
t )t≥0 is uniformly integrable if and only if |θ| < 1. In this

case, for every a, b ∈ R, a < b,

#{u ∈ Nt : Xu(t) ∈ θt + [a, b]}
E[#{u ∈ Nt : Xu(t) ∈ θt + [a, b]}]

→ W (θ) := W (θ)
∞ , a.s. as t →∞.
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Derivative martingale

For θ = 1, W (1)
t → 0, almost surely as t →∞. Derivative martingale:

Dt = −
d

dθ
W (θ)
t

∣∣∣
θ=1

=
∑
u∈Nt

(t − Xu(t))eXu(t)−t .

Theorem (Lalley–Sellke 87)

Almost surely, Dt converges as t →∞ to a non-degenerate r.v. D.

Theorem (Bramson 83 + Lalley–Sellke 87, Aïdekon 11)

Let Mt = maximum at time t. Then, conditioned on D, for some constant
C > 0,

Mt − (t − 3

2
log t)⇒ logCD + G,

where G is a standard Gumbel-distributed random variable.
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Absorption at the origin

Start with one particle at x ≥ 0.

Add drift −µ, µ ∈ R to motion of particles.

Kill particles upon hitting the origin.

Theorem (Kesten 78)

P(survival) > 0 ⇐⇒ µ < 1.

Why should we do this?

Useful for the study of BBM without absorption (e.g., convergence of
derivative martingale)

Biological interpretation: natural selection

Appears in other mathematical models, e.g. infinite bin models Aldous,
Mallein–Ramassany
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Absorption at the origin, µ ≥ 1

Start with one particle at 0, absorb particles at −x. Nx = number of particles
absorbed at −x. Set

θ± = µ±
√
µ2 − 1.

Theorem (Neveu 87, Chauvin 88)

(Nx)x≥0 is a continuous-time Galton–Watson process. Moreover, almost
surely as x →∞,

If µ > 1, e−θ−xNx → W (θ−).

If µ = 1, xe−xNx → D.

Theorem

As x →∞,
µ > 1: P(W (θ−) > x) ∼ C(µ)x−θ+/θ− Guivarc’h 90, Liu 00

µ = 1: P(D > x) ∼ 1/x Buraczewski 09, Berestycki–Berestycki–Schweinsberg 10,
M. 12
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Absorption at the origin, µ ≥ 1 (contd.)

θ± = µ±
√
µ2 − 1.

Theorem

As x →∞,
µ > 1: P(W (θ−) > x) ∼ C(µ)x−θ+/θ− Guivarc’h 90, Liu 00

µ = 1: P(D > x) ∼ 1/x Buraczewski 09, Berestycki–Berestycki–Schweinsberg 10,
M. 12

Theorem (M. 10, Aïdekon–Hu–Zindy 12)

As n→∞,
µ > 1: P(Nx > n) ∼ C(eθ+x − eθ−x)/n−θ+/θ− .
µ = 1: P(Nx > n) ∼ xex/(n(log n)2).
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Absorption at the origin, µ = 1− ε
Few works on µ < 1 (Berestycki–Brunet–Harris–Miloś, Corre). But near-critical case
µ = 1− ε, 0 < ε� 1 well understood. Parametrize ε by

ε =
π2

2L2
(ε→ 0 ⇐⇒ L→∞).

Theorem (Brunet–Derrida 06, Gantert–Hu–Shi 08)

P1(survival) = exp (−(1+ o(1))L) , L→∞.

Theorem (BBS 10)

There exists C > 0, such that, as L→∞,

PL+x(survival)→ 1− φ(x), φ(x) := E[exp(−CDex)].

and if x = x(L) such that L − x →∞,

Px(survival) ∼ C(L/π) sin(πx/L)ex−L.

Pascal Maillard Branching Brownian motion with selection 13 / 27



Absorption at the origin, µ = 1− ε
Few works on µ < 1 (Berestycki–Brunet–Harris–Miloś, Corre). But near-critical case
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BBS 10 proof

Define
ZLt =

∑
u∈Nt

L sin(πXu(t)/L)e
x−L.

Then (ZLt )t≥0 is (almost) a martingale for BBM with absorption at 0 and at L.

Theorem (BBS 10)

Suppose the initial configurations are such that ZL0 ⇒ z0 as L→∞, and
L −maxu Xu(0)→∞. Then (ZLL3t)t≥0 converges as L→∞ (wrt fidis) to a
continuous-state branching process started at z0. Moreover,
P(BBM survives forever)→ P(CSBP started from z0 goes to ∞).

The CSBP in the above theorem is Neveu’s CSBP and has branching
mechanism

ψ(u) = au+ π2u log u = a′u+ π2
∫ ∞
0

(e−ux − 1+ ux1x≤1)
dx

x2
,

for some (implicit) constants a, a′ ∈ R. In particular, it is supercritical (with
∞ mean).
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BBS 10 proof (2)

Theorem (BBS 10)

If x = x(L) such that L − x →∞,

Px(survival) ∼
CL

π
sin(πx/L)ex−L.

Proof: Set w(x) := L sin(πx/L)ex−L. Start BBM with 1/w(x) particles at x at
time 0. Then

P(survival)→ P(CSBP started at 1 goes to ∞) ∈ (0, 1).

Also, by independence,

1− P(survival) = (1− Px(survival))1/w(x) ∼ exp

(
−Px(survival)

w(x)

)
,

and so
Px(survival) ∼ Cw(x).
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BBS 10 proof (3)

Theorem (BBS 10)

There exists C > 0, such that, as L→∞,

PL+x(survival)→ 1− φ(x), φ(x) = E[exp(−CDex)].

Proof: Wait a long time T (independent of L), so that L −maxu Xu(T)� 1.
Then using L sin(πx/L) ∼ π(L − x) for L − x � L, we get

ZLT ≈ πexDT ,

with (Dt)t≥0 the derivative martingale of usual BBM. Let first L→∞ then
T →∞ to get

PL+x(survival) = 1− E[PL+x(extinction | FT )]
≈ 1− E[P(CSBP started from πexDT goes to 0)]

≈ 1− E[exp(−CDex)] = 1− φ(x).

Pascal Maillard Branching Brownian motion with selection 16 / 27



BBS 10 convergence to CSBP

Basic idea

Decompose process into bulk + fluctuations by putting an additional
absorbing barrier at L.

bulk: Particles that don’t hit L.

fluctuations: Particles from the moment they hit L.

Then,

ZL,bulkt stays bounded over time scale L3.

ZL,fluctuationst increases from the contributions of the particles hitting L,
an increase being roughly distributed as πD, with D derivative
martingale limit.

Particles hit L with rate O(L−3).

Recall: P(D > x) ∼ 1/x, x →∞. This yields convergence of (ZLL3t)t≥0 to
Neveu’s CSBP as L→∞.
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Remarks

1 The basic phenomenological picture of BBM with near-critical drift (bulk
+ fluctuations) was established in Brunet–Derrida–Mueller–Munier 06

2 The techniques in BBS 10 were a key ingredient in the study of BBM with
selection of the N right-most particles, N � 1 (M 16). Relation between
parameters: logN ≈ L, so ε ≈ π2/2(logN )2.
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Critical drift µ = 1. Questions

Questions:

Asymptotic of Px(survival until time t)?

Conditioned on survival until time t , what does the BBM look like?

Kesten 78:

Let Lt = ct1/3, c = (3π2/2)1/3, Fix x ≥ 0.

Px(survival until time t) = xex−Lt+O((log t)
2).

Conditioned on survival until time t , with high probability,

#Nt ≤ eO(t
2/9(log t)2/3) and max

u
Xu(t) ≤ O(t2/9(log t)2/3).

Note: t1/3 scaling reminiscent of results about particles in BBM staying always
close to the maximum Faraud–Hu–Shi, Fang–Zeitouni, Roberts.
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BBS 12 results

Lt = ct1/3, c = (3π2/2)1/3, wt(x) = Lt sin(πx/Lt)ex−Lt .

Theorem (BBS 12)

C1 ≤ PLt (survival until time t) ≤ C2.

If Lt − x ≥ 1,

C1wt(x) ≤ Px(survival until time t) ≤ C2wt(x).

Theorem (Berestycki–M.–Schweinsberg, in preparation)

There exists C > 0, such that, as t →∞,

PLt+x(survival until time t)→ 1− φ(x), φ(x) = E[exp(−CDex)].

and if x = x(t) such that Lt − x →∞,

Px(survival until time t) ∼ (C/π)wt(x)
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New results

Lt = ct1/3, c = (3π2/2)1/3, ζ = time of extinction.

Corollary (BMS)

1 For fixed x ∈ R, under PLt+x , the r.v. (ζ − t)/t2/3 converges in law to
3
c (G − x − logCD), where G is a Gumbel-distributed random variable
independent of D.

2 Suppose Lt − x →∞. Conditionally on ζ > t , under Px , (ζ − t)/t2/3
converges in law to Exp(c/3) as t →∞.

Reason: For fixed s ≥ 0,

Lt+st2/3 = Lt +
c

3
s + o(1).

This gives as t →∞, for fixed x ∈ R,

PLt+x(ζ ≤ t + st2/3)→ φ(x − c

3
s) = E[e−CDe

x−(c/3)s
].
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New results (contd.)

Lt = ct1/3, c = (3π2/2)1/3, ζ = time of extinction, Mt = maxu Xu(t).

Theorem (BMS)

1 For fixed x ∈ R, under PLt+x , the r.v. Mt/t2/9 converges in law to
(3c2(G − x − logCD) ∨ 0)1/3, where G is a Gumbel-distributed random
variable independent of D.

2 Suppose Lt − x →∞. Conditionally on ζ > t , under Px , Mt/t2/9

converges in law to (3c2V )1/3, where V ∼ Exp(1).

Reason: morally, Mt ≈ Lζ−t if ζ > t (and Mt = 0 if ζ ≤ t).

Same result holds with Mt replaced by log#Nt .

Pascal Maillard Branching Brownian motion with selection 23 / 27



New results (contd.)

Lt = ct1/3, c = (3π2/2)1/3, ζ = time of extinction, Mt = maxu Xu(t).

Theorem (BMS)

1 For fixed x ∈ R, under PLt+x , the r.v. Mt/t2/9 converges in law to
(3c2(G − x − logCD) ∨ 0)1/3, where G is a Gumbel-distributed random
variable independent of D.

2 Suppose Lt − x →∞. Conditionally on ζ > t , under Px , Mt/t2/9

converges in law to (3c2V )1/3, where V ∼ Exp(1).

Reason: morally, Mt ≈ Lζ−t if ζ > t (and Mt = 0 if ζ ≤ t).

Same result holds with Mt replaced by log#Nt .

Pascal Maillard Branching Brownian motion with selection 23 / 27



New results (contd.)

Lt(s) = Lt−s = c(t − s)1/3.
Zt(s) =

∑
u∈Ns

wt−s(Xu(s)) =
∑

u∈Ns
Lt(s) sin(πXu(s)/Lt(s))eXu(s)−Lt(s).

Theorem (BMS)

Suppose the initial configurations are such that Zt(0)⇒ z0 as t →∞, and
Lt −maxu Xu(0)→∞. Then

(Zt(t(1− e−s)))s≥0 converges as t →∞ (wrt fidis) to the CSBP with
branching mechanism ψ(u) = au+ 2

3u log u started at z0.

P(ζ > t)→ P(CSBP started from z0 goes to ∞), as t →∞.
Conditioned on ζ > t , (Zt(t(1− e−s)))s≥0 converges as t →∞ to the
CSBP started at z0 conditioned to go to∞.

Proof inspired by BBS 10 but requiring furthermore precise estimates for
density of Brownian motion in curved domains refining those obtained in
Roberts 12.
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Relation between results

In order to understand the relation between the several results, we use the
long-time behavior of Neveu’s CSBP. It grows doubly-exponentially:

Theorem (Neveu 92)

Let (Yt)t≥0 be the CSBP with branching mechanism ψ(u) = au+ bu log u,
a ∈ R, b > 0, starting at z0 > 0. Then,

log Yt
ebt

converges almost surely to a limit Y .

In particular, almost surely, the process survives i� Y > 0. Furthermore, there
is C = C(a, b), such that Y − logCz0 follows the Gumbel distribution.
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Relation between results (contd.)

Heuristic: As long as Rs ≈ Lt(s), we expect log Zt(s) ≈ Rs − Lt(s). When does
Rs become significantly di�erent from Lt(s)?

Answer: With the asymptotic growth of Neveu’s CSBP, can check that
log Zt(s)� Lt(s) as long as t − s � t2/3, hence the turning point is at
s = t − Kt2/3 for K large and one can read o� Mt as well as (ζ − t)/t2/3
from Zt(s) at that point.
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Conclusion

1 We were able to push the techniques from BBS 10 on BBM with
near-critical drift to the case of critical drift.

2 Results might be of help for the fine study of other models involving
extremal particles of BBM.
Example CREM (Derrida’s continuous random energy model): BBM during
time [0, T ] with time-dependent di�usion constant 2σ2(t/T). If σ2 is
strictly decreasing, then (M., Zeitouni 16) there exists a function m(T) and
constants c, c′, c′′ > 0, such that

{maximum at time T} −m(T)⇒ mixture of Gumbel,

with m(T) = cT − c′T 2/3 − c′′ log T + O(1).

Removing the O(1) term would require an analysis similar to the one
performed here.
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