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Branching Brownian motion (BBM)

Definition

Picture by Matt Roberts

@ A particle performs standard Brownian motion started at a point x € R.

e With rate 1/2, it branches into 2 offspring (can be generalized)

e Each offspring repeats this process independently of the others.
— A Brownian motion indexed by a tree.
Pascal Maillard
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Why BBM ?

@ Discrete counterpart: branching random walk, has lots of applications in
diverse domains

o Generalisation of age-dependent branching processes
(Crump-Mode-Jjagers process), model for asexual population undergoing
mutation (position = fitness)

o Toy model for log-correlated field, e.g. 2-dimensional Gaussian free field
appearing notably in Liouville quantum gravity theory.

e Used to study random walk in random environment on trees Hu-Shi et al,,
growth-fragmentation processes Bertoin-Budd-Curien-Kortchemski, loop O(n)
model on random quadrangulations Chen-Curien-M, . ..

@ Intimate relation with (F-)KPP equation

e With diffusion constant depending on time : also known as Derrida’s
CREM spin glass model
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Maximum : LLN

M; = maximum at time f.

LLN (Biggins '77)

Almost surely,

M/t —1, ast— oo.

Picture by Eric Brunet
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A family of martingales

For every 6 € R,

E[#{u € N; : X,(t) = 0t}] = e%t]}DUgt ~ 0t) ~ o3 (1=6%)t

Martingales:
Wt(e) _ Z OXu(D) = (146%)t
ueN;

Theorem (Biggins 78)

The martingale (Wt(e)) >0 Is uniformly integrable if and only if |0| < 1. In this
case, for every a,b € R, a < b,

#{ue N, : X,(t) € 0t + [a, b]}
E[#{u € N; : X,(t) € 0t + [a, b]}]

— w® .= Wéf), a.s. ast — oo.
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Derivative martingale

For 0 =1, Wt(l) — 0, almost surely as t — co. Derivative martingale:

__d o _ X, (1) —t
D= —— W, ’(HMEZN(t X.(t))e :

Theorem (Lalley-Sellke 87)

Almost surely, D; converges as t — oo to a non-degenerate r.v. D.

Theorem (Bramson 83 + Lalley-Sellke 87, Aidekon 11)

Let M; = maximum at time t. Then, conditioned on D, for some constant
C >0,

3
M; — (t— Elogt) = log CD + G,

where G is a standard Gumbel-distributed random variable.
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Absorption at the origin

@ Start with one particle at x > 0.

e Add drift —p, 11 € R to motion of particles.

e Kill particles upon hitting the origin.
Theorem (Kesten 78)

P(survival) > 0 <= p <L

Why should we do this?
@ Useful for the study of BBM without absorption (e.g., convergence of
derivative martingale)
@ Biological interpretation: natural selection

@ Appears in other mathematical models, e.g. infinite bin models Aldous,

Mallein-Ramassany
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Absorption at the origin, ;1 > 1

Start with one particle at 0, absorb particles at —x. N, = number of particles

absorbed at —x. Set
0L =p+t/p?—1L

Theorem (Neveu 87, Chauvin 88)

(Ny)x>0 is a continuous-time Galton-Watson process. Moreover, almost
surely as x — oo,

o Ifu>1 e *N, - wt-),
o Ifu=1xe *N;, — D.

Theorem
As x — 00,
° 1: P(W-) —0+/9~ Guivarc’ -
> 1 P( > x) ~ C(p)x Guivarc’h 90, Liu 00
o u=1: ]P’(D > x) ~1 / X Buraczewski 09, Berestycki-Berestycki-Schweinsberg 10,
M. 12
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Absorption at the origin, ¢+ > 1 (contd.)

O =p+~/p?—1

Theorem
As x — 00,

o u>1LP(WO) > x) ~ C(u)x=0+/ Guivarch 90, Liu 00

@ u =1 P(D > x) ~ 1/x Buraczewski 09, Berestycki-Berestycki-Schweinsberg 10,

M. 12

Theorem (M. 10, Aidekon-Hu-Zindy 12)

As n — 00,
o 1> 1:P(N, > n) ~ C(ef+* — /-%) /n=0+/0-,
o i =1:P(N, > n) ~ xe*/(n(log n)?).
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Absorption at the origin, u =1—¢

Few works on g < 1 (Berestycki-Brunet-Harris-Milos, Corre). But near-critical case
uw=1—¢,0 < e < 1well understood. Parametrize ¢ by

7r2

€=n (e—=0 < L— ).

Theorem (Brunet-Derrida 06, Gantert-Hu-Shi 08)

Py(survival) = exp (—(1+ o(1))L), L — oo.
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Absorption at the origin, u =1—¢

Few works on g < 1 (Berestycki-Brunet-Harris-Milos, Corre). But near-critical case
uw=1—¢,0 < e < 1well understood. Parametrize ¢ by

£=— (e—=0 < L— ).

Theorem (Brunet-Derrida 06, Gantert-Hu-Shi 08)

Py(survival) = exp (—(1+ o(1))L), L — oo.

Theorem (BBS 10)
There exists C > 0, such that, as L — oo,

Prix(survival) = 1— ¢(x), ¢(x) := E[exp(—CDe")].
and if x = x(L) such that L — x — oo,

P, (survival) ~ C(L/7) sin(rx/L)e*~.
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BBS 10 proof

Define

Z Lsin(mX,(t)/L)e"™

ueN;
Then (Z )t>0 is (almost) a martingale for BBM with absorption at 0 and at L.

Theorem (BBS 10)

Suppose the initial configurations are such that Zt = zy as L — oo, and
L — max, X,,(0) — oo. Then (Z [gt)[>() converges as L — oo (wrt fidis) to a
continuous-state branching process started at zy. Moreover,

IP(BBM survives forever) — P(CSBP started from z, goes to o).

The CSBP in the above theorem is Neveu’s CSBP and has branching
mechanism

o0 dx
Y(u) = au+ r*ulogu = d'u+ 7r2/ (™™ =1+ uxli<1) —,
0 X

for some (implicit) constants a, @’ € R. In particular, it is supercritical (with
00 mean).
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BBS 10 proof (2)

Theorem (BBS 10)
If x = x(L) such that L — x — oo,

CL
P, (survival) ~ — sin(mx/L)e**.
s

Proof: Set w(x) := Lsin(mx/L)e*~L. Start BBM with 1/w(x) particles at x at
time 0. Then

P(survival) — P(CSBP started at 1 goes to co) € (0,1).

Also, by independence,
P, (survival)
— ; —(1— : w(x) _ x(survival)
1 — P(survival) = (1 — Py(survival)) exp ( () > ,
and so
P, (survival) ~ Cw(x). O
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BBS 10 proof (3)

Theorem (BBS 10)
There exists C > 0, such that, as L — oo,

Prix(survival) = 1— ¢(x), ¢(x) = Elexp(—CDe")].

Proof: Wait a long time T (independent of L), so that L — max, X,(T) > 1.
Then using Lsin(wx/L) ~ (L — x) for L — x < L, we get

Z% ~ ’iTexDT7

with (Dy);>¢ the derivative martingale of usual BBM. Let first L — oo then
T — oo to get

Pr1x(survival) =1 — E[PL(extinction | Fr)]
~ 1 — E[P(CSBP started from me*Dr goes to 0)]
~1— Elexp(—CDe")] =1— ¢(x). O
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BBS 10 convergence to CSBP

Basic idea

Decompose process into bulk + fluctuations by putting an additional
absorbing barrier at L.

@ bulk: Particles that don’t hit L.

@ fluctuations: Particles from the moment they hit L.

Then,

° Zt["bu"( stays bounded over time scale 3.

Zf"ﬂucmﬂﬁons increases from the contributions of the particles hitting L,

an increase being roughly distributed as 7D, with D derivative
martingale limit.

e Particles hit L with rate O(L3).
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BBS 10 convergence to CSBP

Basic idea

Decompose process into bulk + fluctuations by putting an additional
absorbing barrier at L — A, where A is a large constant.

@ bulk: Particles that don’t hit L — A.

@ fluctuations: Particles from the moment they hit L — A.

Then,

e /- ecreases almost deterministically as exp(—Af .
zlbuk g Imost deterministically as exp(—At/L%)

Zf"ﬂucmﬂﬁons increases from the contributions of the particles hitting L,

an increase being roughly distributed as me=“D, with D derivative
martingale limit.

e Particles hit L — A with rate O(e?/L3).
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BBS 10 convergence to CSBP

Basic idea

Decompose process into bulk + fluctuations by putting an additional
absorbing barrier at L — A, where A is a large constant.

@ bulk: Particles that don’t hit L — A.

@ fluctuations: Particles from the moment they hit L — A.

Then,

e /- ecreases almost deterministically as exp(—Af .
zlbuk g Imost deterministically as exp(—At/L%)

Zf"ﬂucmﬂﬁons increases from the contributions of the particles hitting L,

an increase being roughly distributed as me=“D, with D derivative
martingale limit.

e Particles hit L — A with rate O(e?/L3).

Recall: P(D > x) ~ 1/x, x — co. This yields convergence of (Z};,);>¢ to
Neveu’s CSBP as L — oc.
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Remarks

@ The basic phenomenological picture of BBM with near-critical drift (bulk
+ fluctuations) was established in Brunet-Derrida-Mueller-Munier 06

@ The techniques in BBS 10 were a key ingredient in the study of BBM with
selection of the N right-most particles, N >> 1 (M 16). Relation between
parameters: log N ~ L, so ¢ ~ 7°/2(log N)?.
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Critical drift 4 = 1. Questions

Questions:
e Asymptotic of P (survival until time ¢)?

o Conditioned on survival until time ¢, what does the BBM look like?
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Critical drift 4 = 1. Questions

Questions:

e Asymptotic of P (survival until time ¢)?

e Conditioned on survival until time ¢, what does the BBM look like?
Kesten 78:

o Let I; = ct'/3, ¢ = (37%/2)/3, Fix x > 0.
P (survival until time £) = xe*~ L0l 0,

e Conditioned on survival until time ¢, with high probability,

#N; < O (og ") 4 max X, (1) < O(#*°(log t)%/%).

Note: /3 scaling reminiscent of results about particles in BBM staying always
close to the maximum Faraud-Hu-Shi, Fang-Zeitouni, Roberts.
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Ly = ct'/3, ¢ = (37%/2)/3, wy(x) = Ly sin(mx/L;)e b,

L —x>1,

G < Py, (survival until time t) < G,.

Cw(x) < Py(survival until time t) < Gu(x).
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BBS 12 results

Ly = ct'/3, ¢ = (372 /2)'/3, wy(x) = Ly sin(mx/L;)e b,
Theorem (BBS 12)
G < Py, (survival until time t) < G,.

IfLi—x>1,

Cuwi(x) < Py(survival until time t) < Guy(x).

Theorem (Berestycki-M.-Schweinsberg, in preparation)
There exists C > 0, such that, as t — oo,

Py, +x(survival until time t) —1— ¢(x), ¢(x) = E[exp(—CDe")].

and if x = x(t) such that Ly — x — oo,

P, (survival until time t) ~ (C/7)w;(x)
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New results
Ly = ct'/3, ¢ = (3w2/2)'/3, ¢ = time of extinction.
Corollary (BMS)
Q for fixed x € R, under Py, the r.v. (C — t)/t*/* converges in law to

3(G — x — log CD), where G is a Gumbel-distributed random variable
independent of D.

@ Suppose Ly — x — oc. Conditionally on ¢ > t, under Py, (¢ — t)/t*/3
converges in law to Exp(c/3) as t — oc.

Reason: For fixed s > 0,
c
Lt+st2/3 - L[ + gs + 0(1)-
This gives as t — oo, for fixed x € R,

Proi(C < t+st23) — p(x — gs) = E[e= ¢,
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New results (contd.)

L= ct/3, ¢ = (37r2/2)1/3, ¢ = time of extinction, M; = max, X, (1).

Theorem (BMS)

Q for fixed x € R, under Py, ,, the r.v. M;/t*/° converges in law to
(3¢%(G — x — log CD) \V 0)/3, where G is a Gumbel-distributed random
variable independent of D.

Q Suppose L; — x — oco. Conditionally on ¢ > t, under Py, M;/t*/°
converges in law to (3¢*V)/3, where V ~ Exp(1).

Reason: morally, M; ~ Lo, if { >t (and M; =0 if ¢ < ¢).
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New results (contd.)

L= ct/3, ¢ = (37r2/2)1/3, ¢ = time of extinction, M; = max, X, (1).

Theorem (BMS)

Q for fixed x € R, under Py, ,, the r.v. M;/t*/° converges in law to

(3¢%(G — x — log CD) \V 0)/3, where G is a Gumbel-distributed random
variable independent of D.

Q Suppose L; — x — oco. Conditionally on ¢ > t, under Py, M;/t*/°
converges in law to (3¢*V)/3, where V ~ Exp(1).

Reason: morally, M; ~ Lo, if { >t (and M; =0 if ¢ < ¢).

Same result holds with M; replaced by log #N.
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New results (contd.)

o Li(s) = Ly = c(t — 5)"3.
© Zi(s) = Luen, Wi—s(Xu(s)) = X en, Le(s) sin(wXy(s)/Li(s)) e )1,

Theorem (BMS)

Suppose the initial configurations are such that Z;(0) = zy as t — oo, and
Ly — max, X,,(0) — oo. Then

o (Z/(t(1—e*)))s>0 converges as t — oo (wrt fidis) to the CSBP with
branching mechanism (1) = au + Sulog u started at z.

e P(¢ > t) — P(CSBP started from z, goes to o), as t — oc.

e Conditioned on { > t, (Z(t(1 — e*)))s>0 converges as t — oo to the
CSBP started at zy conditioned to go to co.
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New results (contd.)

o Li(s) = Ly = c(t — 5)"3.
© Zi(s) = Luen, Wi—s(Xu(s)) = X en, Le(s) sin(wXy(s)/Li(s)) e )1,

Theorem (BMS)

Suppose the initial configurations are such that Z;(0) = zy as t — oo, and
Ly — max, X,,(0) — oo. Then
o (Z/(t(1—e*)))s>0 converges as t — oo (wrt fidis) to the CSBP with
branching mechanism (1) = au + Sulog u started at z.
e P(¢ > t) — P(CSBP started from z, goes to o), as t — oc.

e Conditioned on { > t, (Z(t(1 — e*)))s>0 converges as t — oo to the
CSBP started at zy conditioned to go to co.

Proof inspired by BBS 10 but requiring furthermore precise estimates for
density of Brownian motion in curved domains refining those obtained in
Roberts 12.
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Relation between results

In order to understand the relation between the several results, we use the
long-time behavior of Neveu’s CSBP. It grows doubly-exponentially:
Theorem (Neveu 92)

Let (Y;)¢>o be the CSBP with branching mechanism 1)(u) = au + bulog u,
a € R, b > 0, starting at zg > 0. Then,

log Y; .
b converges almost surely to a limit Y.

In particular, almost surely, the process survives iff Y > 0. Furthermore, there
is C = C(a, b), such that Y — log Cz, follows the Gumbel distribution.
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Relation between results (contd.)

Heuristic: As long as Ry ~ L(s), we expect log Z;(s) = Ry — L(s). When does
R; become significantly different from L;(s)?
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Relation between results (contd.)

Heuristic: As long as Ry ~ L(s), we expect log Z;(s) = Ry — L(s). When does
R; become significantly different from L;(s)?

Answer: With the asymptotic growth of Neveu’s CSBP, can check that

log Z:(s) < Ly(s) as long as t — s > t%/3, hence the turning point is at

s =t — Kt*/3 for K large and one can read off M; as well as (¢ — t)/1*/3
from Z;(s) at that point.
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Conclusion

We were able to push the techniques from BBS 10 on BBM with
near-critical drift to the case of critical drift.

Results might be of help for the fine study of other models involving
extremal particles of BBM.

Example CREM (Derrida’s continuous random energy model): BBM during
time [0, T] with time-dependent diffusion constant 20%(¢/T). If o2 is
strictly decreasing, then (M., Zeitouni 16) there exists a function m(T) and
constants ¢, ¢/, ¢’ > 0, such that

{maximum at time T} — m(T) = mixture of Gumbel,

with m(T) = ¢T — ¢ T*3 — " log T + 0().

Removing the O(1) term would require an analysis similar to the one
performed here.
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